Skip to main content

Clear Screen with CSI Sequence

Today, following my previous post, I will explain how to clear the screen using CSI Sequences. There are two sequences in the CSI Sequence for clearing.

The first one is the Erase in Line sequence, called EL. It is composed of CSI # K; it is used to erase lines, as the name suggests. If the # is not provided, the default value is 0, and if a value is provided, it must be one of the three: 0, 1, or 2. The terminal will ignore the sequence if any other value is provided. For example, if you print 0x311b5b334b32(or 1^[3K2), the terminal ignores ^[3K, and the screen displays only 12. The behavior of 0, 1, and 2 can be summarized as follows.

0
Erases from the cursor to the end of the line.
1
Erases from the beginning of the line to the cursor.
2
Erases the entire line, regardless of the cursor's position.

Remember that the EL sequence does not move the cursor's position. Therefore, if you want to erase the current line and write a new line on the current line, you should use the EL sequence together with a carriage return (\r).

The second is the Erase in Display sequence, called ED. It is composed of CSI # J and is used to erase the screen. Like EL, the area of the screen to be erased is determined by the value of #.

0
Erases from the cursor to the end of the screen.
1
Erases from the beginning of the screen to the cursor.
2
Erases the entire screen, regardless of the cursor's position.
3
Erases the lines stored in the scroll buffer.

As you see, it is the same as EL. The default value is 0, not moving the cursor's position, and ignoring values other than the defined values. The only difference is the number 3, which is not defined in EL.

This sequence is used to erase the values stored in the scrollback buffer. It had not existed in the VT100 specification. At that time, terminals did not have the concept of scrolling. This sequence was added after the appearance of the xterm terminal emulator, which came with the X Window System. So, in the past, many terminal emulators did not support it, but nowadays most environments support CSI 3 J without any problems.

ED and EL are rarely used directly unless you are a fan of a TUI. It is because these sequences are fundamentally for controlling the terminal, and the purpose of most programs we write is not to control the terminal. However, we use ED every day without realizing it. In the next post, we will take a closer look at this topic.

Comments

Popular posts from this blog

Iterator Adapters in Rust

An Iterator that takes another iterator and returns a new one is called an iterator adapter . The name "adapter" comes from one of the GoF's design patterns, the adapter pattern . However, in reality, it corresponds more to the decorator pattern , so if you pay too much attention to the name, you might get confused about its purpose. So it's better not to worry too much about the name. Enough complaining about the name, what does an iterator adapter do? An iterator adapter adds a task to be performed when the iterator iterates. This will be easier to understand when you see an example. The map function is one of the famous adapters. The iterator returned by the map function for those who have used functional languages iterates over new values transformed from the original values. Besides, various adapters are already implemented in the standard library. Among them, the most frequently used are those that are convenient to use with loops. Examples include the ...

[C++] enum class

Traditional C++ enum had several issues. To solve these problems, C++11 introduced a new feature called enum class . In this article, I will examine the problems with the traditional enum and how they are solved with enum class . First, traditional enum could not be forward-declared. The reason was that if the values in the enumerator were unknown, it was impossible to determine their size . However, enum class is treated as int if an underlying type is not specified, assigning values outside the range of an int will raise a compilation error. If you want to use values outside the range of an int , you need to specify the underlying type. Another problem with traditional enum was that the scope of enumerator names was not limited. Let's see the following example. Here, we try to represent the results of IO and Parse functions with enum s. However, this code will not compile because the Error and Ok of IOResult conflict with those of ParseResult . To resolve t...

Understanding Aspect-Oriented Programming with Python Examples

Object-Oriented Programming (OOP) manages code by grouping it into independent modules known as objects, emphasizing the crucial principle of Separation of Concerns. This means each object should focus on its specific responsibilities. However, real-world applications often feature functionalities that are common across multiple objects or modules, such as logging, security, transaction management, and performance monitoring. These functionalities are called Cross-cutting Concerns. Challenge of Cross-Cutting Concerns Scattering These cross-cutting concerns, when handled solely with OOP, create two major problems. The first problem is Scattering , which is when code for a specific functionality is spread across multiple places through copying and pasting. For instance, imagine adding user permission checks and logging code to every function. The same logging and permission checking code would repeatedly appear within each method. Tangling The other issue is Tangling . This refe...